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Abstract
We consider the problem of finding the minimum number K(nc) of total switching
functions of n variables necessary to cover the set of all switching functions which are
: specified in at most ¢ positions. We find an exact solution for Kin,2) and an upper bound for

K(n,c) which is better than a previously known upper bound by an exponential factor.
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1. Introduction

The problem considered here can be stated as follows:
P1: Given the set r of all c-specified boolean functions of n variables, i.e., all
functior?s which are specified in at most ¢ positions, to find the cardinality
K(n,c) of a set G of total functions such that
Pl-1: For all f inF, there is a g in G such that g covers f, i.e,, if f(x) is -
specified then g(x) = f(x).
P1-2: Kingc) = |G, is minimal,
This problem relate:: the number of additional exterior connections (besides input
and output) that are required in a circuit which is to be c-universal. (A circuit is c-universal
if it is capable of simulating the behavior of any partial function which is specified in ¢ or
less points of its domain.)
This problem was :tudied in [1] in connection with adaptive networks, where an

upper bound for K(n,c) was shown to be
K(ne) s i ( poks

where m = 27, p = [c/2 moc &, & = mel-c
This upper bound agrees with the exact solutions for c=1 (i.e., K(n,1)=2) and
c=2"-1 (e, K(n,2n-l)-22n'l). For c=2 we have §=2"-1 and, for any n » |, p=1 so

Kn2) € £ 2ong))=( 20 Za=2n v

and in general, for small c, this bound is of the order of 2nel2,

In this note we show that for ¢=2, K(n,2) = O(n) and present an upper bound

which, for fixed ¢ is a power of n.




2. An Exact Solution for K(n,2)

Consider the following problem:
P2: Given n and ¢, find the dimension s(n,c) of a vector space over GF(2) such
that there is a set P of at least 2" vectors in it satisfying:
P2-1: (Yp|PpraPe) € Py (VD| boreibe) € (8,1), p1P1pp02 .. pPc # @
P2-2: s(nc) is minimal
Notation: We will use the following convention
1) (Vab,.,z) € M means for all elements a,b,...,2 in M.
2) pP = if b=l then p else ~p
The first result we present shows that essentially. Pl and P2 are equivalent
problems.
Lemma ]: For all ¢ > I, K(nc) = s(n,c).
Proof: We show that any solution to Pl satisfying Pl-1 is a solution to P2
satisfying P2-1 and conversely. This implies that the minimality conditions are a'so sat.isfied.
let G = {gl,gz,...,gK(n,c)} be a solution to Pl satistying P1-1. Consider the set
P = {p(x) = (gl(x),gz(x),...,gK(n,c)(x))ix € {8,11"). Llet xy ¢ {B,1}" with x # y. Then

p(x) = ply) == (Yg) € G, gix) = gly). But since ¢ > 1, this implies that there is a c-specified

function f with @ = fix) # fly) = | which is not covered by any g € G which is a

contradiction. Thus p(x) # ply), which shows that |P| = 2"

Assume now that there are c different elements pj,pp,..Pc in P such that, for some
by,bp.be € {91}, plblpzbz...pcbc = 0. let pj = p(xj) = ‘gl(*j)»gz(*j)»--»zx(n,c)(Xj’) for
some n-tuple X; ¢ {0,]". Letf be a c-specified function such that f(xj) =bjfor j = 1,2,..c.
Since plblpzbZ...pcbc = @, for each k = 1,2,..K(nc), there is a j, 1 Sj < ¢ such that

3k("j) = l-bj. Thus, for this value of j we have 8k("j) ’ f(xj) s0 g does not cover f. Since
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this holds for all k, we have that G does not satisfy P1-1, a contradiction. Thus, P2-1 is
satisfied.

Conversely, let P be a set of 2" s-dimensional vectors P = {pg,p|,P2,sP2N_1}
satisfying P2-1. Consider the set G = {g|,gp,-8s} Of boolean functions of n variables
defined as follows:

For each 1 s j < s, (Vi) € {&,},.,2"-1}, gj((i-Z)l' (i) v in)y) = (pi)j where ip
denotes the binary representation of i with n bits, (i), denotes the r-th bit and for an
s-dimensional vector p, (p), denotes the r-th component.

Let f be a c-specified function of n variables. Without loss of generality, assume
that i is specified at ((i5) |, (i2), = s(ip)y) for i = B,1,...c-1. We claim there is at least one
g which covers f. Define, for i = 8,1,..c-1, b, = f((in)}, (i2)p, - ,(ip),). Since P satisfies
P2-1, pg°  “l.p..|Pec-1 # @. Thus, there is a j€{1,2,.s} such that, for all
i€{0,l,..c-1}, (pibi)j = ]. (Note that pibi is either p; or its complement, and this means
the j-th component of this vector is 1.) This means that (p-,)j = bj. By the definition of b;
and the definition of G we have

gj((lz)l, (i2)9y e slip)y) = H(in)y, (i2)p) - i)y
for alli € {@,1,..,c-1}. Thus, g ¢ G covers f. This completes the proof of Lemma 1. |

Now we focus our attention to Problem 2. In what follows, we assume s is
restricied to be even and we will show that K(n,2) can be deiermined exactly (to within 1).
We first prove an auxilliary result. Since P2 can be interpreted as: Find the smallest s such
that there are at least 2" points in the s-cube satisfying P2-1, we will now show that the

search for points in the s-cube satisfying P2-1 can be reduced to the set of all points in the

middle plane (i.e., having weight s/2).




Lemma 2: Let¢ = 2, s be an even positive number. and P be a set of s-dimensional
vectors satisfying P2-]. Then, there is a set Q of s-dimensional vectors, each of which has
weight s/2 and such that Ql = P, satisfying P2-1.

Proof: We can assume, without loss of generality, that all vectors in P have
weight 2 s/2. (It is clear that changing a vector Ly its complement in any set satisfying
P2-1 also produces a set satisfying P2-1.) If all vectors have weight s/2 we have proved
the lemma. Assume then that P contains t vectors P1iP2w-Py With maximal weight u > /2.
We will construct a set P' such that all vectors in it will have weights w such that
s/2 S w <u Sinceu - s/2 is finite this will prove the lemma,

Choose any set of t vectors q1,925-4G With the property that q < pjfori=12..t
and such that the weight of each q; is u-1.

Claim The set P' = P U {ql,qz,...,qt} - {pl,pz,..._.pt} is the required set.

To show the claim, we first note that there are always t vectors g; as above. This
follows directly from the relationship which exists between points in the s-cube.

Next we show that for any p, j = 1,2,.,t and for any pb, pe¢pP-~ {pl,pz,...,pt},
2 2, where w(p) denotes the weight of a boolean vector p. This follows because
b) .

w(pjp w(pj) + w(pb) - w(pjopb) 2 U+ (s-u+l) - (s-1) = 2. We then have that

w(g,-pb) s w(pj(~aj)pb) = w(pjpb)ow(~aj) - w(pjpbwaj) 22+(s-1)-s=1 and 50

gjpb#g. (Here 3 is an atom such that 3j < pj and qj = pj(~aj).) Similarly,
by .

W(~q,-p W((~p,-*a,-)pb) = W(~pjpb*ajpb)z w(~pjpb) 2 1.
This means that any vector q and any vector in P - {P| Py} satisfies P2-1.
Clearly, any two vectors in P - {pl,...,pt} satisfy P2-1, so it remains to be shown that any

two vectors in {ql,qz,...,qt} satisfy P2-1.

We have w(~g; "'qj) - W(("'Pi’ai)(”pj’aj)) 2 w(~p; ~pj) 2 1.




Also w(~q-lqj) 21 since q 7 q; and wig) = w(qj) > s/f2. Finally,

w(qiqj) = wip(~2) pj(~aj)) = w(pipj) + w(~ai~aj) - w(pipj0~ai~aj).

Siﬁce w(p;) = w(pj) =u>sf2,

w(p-,pj) = wip) + w(pj) - w(piopj)z (s/2+1) + (s/2+1) - (s-1) = 3

So w(qiqj) 2 3 ¢+ (s-2) - s = . This completes -2 proof of the lemma.

Lemm'a 2 makes 'the conditions in P2-1 to reduce w

(Vpp2) € P,p pp # R and ~py~py ¥ B

(The other two conditions which imply py < pp or pp < py are satistied trivially if
wip|) = w(py)). But these conditions are equivalent to saying that p; or pp are each the
complement of the other.. Since the maximum number of points with weight s/2, satisfying

this condition is

1/2( ssIZ) we have shown:

Theorem 1: The solution to problem P2, for c=2, is given by s satistying

g = min{1/2( g, ) 2 2"

Since 1/2 ( gy, )

Thus we get K(n,2) = O(n) as was to be shown.

3. A Polynomial Bound on K{n.c)

In this section we will show that for each ¢, K(n,c) grows not more than with a
polynomial of n, namely Kinc) < 2¢n¢"l. This is a substantial improvement over the
previously mentioned bound. To obtain this bound we will constru.i a set G of functions
satisfying P1-1. The construction is a modification of one suggested to the author by R.

Rivest who pointed out the existence of polynomial bounds for this problein




Let U and V be sets of functions of n-1 variables. Let U x V be the set of functions

of n variables defined as UxV = {fJuel, 3Jvev, Yy, - by €{01},
(8,b,..0p) = ulby,...bpy), f(1,65,.,b,) = viby,.,b}}.  Note that |UxVj=|U[V] Let i
Us= {ul,uz,...,up} and V = {vl,vz,...,vp) be sets of functions of n-1 varicbles with
p = |Ul = |Vl Let U+ \ be the set of p functions of n variahles defined as
U+ V= {£iV(by,b3,...0,)€{0,1}, £;(8,b,..b5) = uj(boybp)y fi(1,boybp) = v;(bo,.bp)).

Let 3(n,c) be a set of functions satisfying P1-1 for some n and ¢. G(nc) can be
constructed as follows:

1) Find all G{n-1,d), for d = 1,..c.

c-l
2) Ginc) = {G(n-1,c) + G(n-1,6)} U klil G(n-1,k) ¥ G(n-1,c-Kk).

The following is an immediate conseg:ence of this definition. ;

Lemma 3: The set G(nc) constructed as above satisfies P1-1. i
From the above construction we get the following recurrence for K(n,c):

K(ne) s Kin-1¢) ¢+ X {n-1,k) . K(n-1,c-k)
1 skge-]

Using this recurrence we now show
heorem 2: Kinc) < 2%n¢~ 1,
Proof: For c=1 we know K(n,1) = 2 s0 the theorem holds. Assume the result holds

for all values of the second parameter less than ¢. Then, using the above recurrence,

King) S Kin-1,c) + T 2K(n-1)k-1 | 26k pye-k-1
i sk<e-1

Since the term inside the summation does not depend on k we get a new recurrence:

Kire) < Kin-1,¢) + 2%c-1)(n-1)¢"2 5o

n-1
K(nc) < 2%(c-1) '21 €72 < 2%(c-1) (n-1)¢" 1 Jc-1) < 26nc-]
j-




which proves the theorem. |

Since the number of control lines to select any of the K(nc) functions is log K(n,c)
we get as a corollary:

Corollary 1: The number of exterior connections (besides those used for input) to a
c-universal circuit is no more than (c-1) log n + ¢

Conclusions

In this note we have reexamined the problem of the number of exterior connections
needed to control a circuit which is to be c-universal. For ¢ = 2 we have fcind an exact
solution and shown an upper bound for this number in the general case. The small bound
found (of the order of ¢ log n for the number of exterior connections) makes the
implementation of these circuits very practicable.
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